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The self-excited oscillations of an oscillator which is coupled by dry friction to a base moving at a constant velocity (Fig. 1) is 
considered. It is assumed that the coefficient of sliding frictionff is constant and that the coefficient of static friction is a pie, cew~- 
linear function of the duration tk of the preceding interval of prolonged contact between the body and the base (Fig. 2) [1]. 
A dassilication of the simplest periodic and steady-state stochastic self-excitod oscillations of the oscillator is given and the 
domains of their existence in the parameter space of the system are constructed. The domains of transient-type motion, 
within which periodic modes of arbitrary complexity exist, are analysed in detail. In particular, the equations of the so-c.alled 
inaccessible boundaries [2] are constructed in explicit form. A denumerable set of different periodic trajectories of the 
dynamical system undc:r consideration exists in a small neighbourhood of these boundaries. O 1997 Elsevier Science Ltd. All 
rights reserved. 

In [3], at tention was drawn for the first time to the possibility of exciting stochastic self-excited oscillations. The 
case of a smooth, monotonically increasing characteristic of the coefficient of static friction of the exponential  type 
was subsequently investigated in detail [4]. Here, the occurrence of finite domains in the parameter  space of the 
problem where transient-type motions exist was not detected. 

1. E Q U A T I O N S  O F  M O T I O N .  P H A S E  S P A C E .  
T H E  S U C C E S S I O N  F U N C T I O N  

The equations of motion of the essentially non-l inear  system under  consideration within the intervals in which 
slipping and prolonged contact occurs have the form 

m~ +cx + f . P s i g n ( . i -  V)=O, x;e V (1.1) 

it=v, clxl~ fe (1.2) 

where m is the mass, P is the weight of the body, c is the stiffness of the spring and, in accordance with what has 
been said above, the coefficient of static friction is equal to 

If. +(f* -f,)t k It,, O<t k <t* (1.3) 
f = [ f * ,  t k >t* 

We assume that, when - t k < t < 0, the body is in contact with the belt and, when t = 0, we have x = f(t~)P/c, 
.~ = V. Later, the motion occurs with a lag (.~ < V) and 1is completed when t = t 0), when .~ = V (x = x 0)) for the 
first time. If, in this case, the acceleration ~, when t = t ~ ~ + 0 and.r  > Vby virtue of Eq. (1.1), is positive (cx 0) + 
f . P  < 0), then there is an instantaneous change in the direction of the slipping and an interval of motion with a 
lead (.~ > V) begins. In the opposite case~vhen t > t 0), a subsequent prolonged contact is inevitable. 

A preliminary analysis [4] shows that, generally speaking, only a finite number  of subsequent intervals with lags 
and leads is possible and that this number  is greater, the greater the differencef(tk) - f . .  In this case, the successive 
intervals tk and tk+l of prolonged contact are related to one another  by a point mapping T of the half-line L0I  ) 
into itself 

T(Tik+I ) = q~(Tlk ) (1.4) 

where 
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Fig. 1. Fig. 2. 

~'(n)  ~- I~n - ~(~) 

¢(q) = I - ( - l ) J [ ¢ ( q ) -  2j + 1] 

2( / ' -  1) < E(rl) < 2j (/' = 1, 2, 3, ...) 

~(~)={~:, n>~.°<~<~" 
f' - f. ~.tk 

nk t 

f . e  f .  t" 

(1.5) 

and the value o f j  is equal to the number  of  intervals where slipping occurs when t k < t < tk+ 1. It should be noted 
that  the ith slipping stage exists if e(Th) > 2(i - 1). The qualitative forms of the functions ~P and tO for 2 < e. < 4 
are shown in Fig. 3 by the solid and dashed lines respectively. 

2. T H E  S U C C E S S I O N  F U N C T I O N S  

2.1. It follows from (1.4), (1.5) and Fig. 3 that, when [3 > 2, there is always one stable fixed point  TI~ = 0 of the 
mapping T which corresponds to harmonic oscillations of the body 

X= fcP+ V ~  s i n ~  t 

without zones of prolonged contact with the belt. The line [~ = 2 in the plane of the parameters  [I, ~. is the boundary 
between the trajectories of the dynamical system (TDS) which correspond to uninterrupted motions and periodic 
or stochastic types of  motion with prolonged contact  of the body. As  [3 (0 < [I < 2) decreases, the number  of simple 
fixed points of the mapping T, which are de termined from the equation ~P('q*) = q~(~*), increases. In this case, 
the fixed point  "q~ becomes unstable and simple stable fixed points Tl* exist only in the domain of the parameters  
~ > ~. and are de termined from the relations 

TI~ = [I -I [I + e ,  - ( - I )  i (e ,  - 2i + l)] (2.1) 

o a k 6. 

Fig. 3. 
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and the i/2-cycle trajectories of the dynamical system with a valued of prolonged contact ¢1~' of the body with the 
belt [4] which correspond to them. 

The remaining simple fixed points ~ *  belonging to the intervals 0 < ~**  < e. are unstable and are defined in 
terms of the parameters of the system by the following formula 

n ~ * [ l + ( - l ) k + l ( l - 2 k ) ] / [ ~ - l + ( - l )  k ] (k=2,3.. .)  (2.2) 

It also follows from (1.4) and (1.5) that, if 2 < ~. < 4 (j = 2) then: when 0 < 13 < 4/e., a stable 1-cycle periodic 
TDS with a time TI~ of prolonged contact between the body and the belt exists; stable cycles of multiple points of 
the mapping T ~ exist when 4/e. < ~ < (2 + e.)/e., and 1-cycle stochastic TDS occur when (2 + e.)/e. < ~ < 2. 

If 4 < e. < 6 (j = 3), then, similarly, we have that 3/2-cycle stable periodic TDS exist when 0 < 13 < 2 - 4/e. 
with a time n~ of prolonged contact between the body and the belt, cycles of multiple points of the mapping 7" 
are observed when 2 -  4/e. < ~ < (2 + e.)/e, and, finally, when (2 + e.)/e. < ~ < 2, 1-cycle stochastic trajectories 
of the dynamic system with prolonged contacts occur. 

Continuing to coesider the intervals of change, the following can Ix: shown in the general case. 
1. Trajectories of the dynamical system without prolonged contacts of the body occur in the domain Go ([3 > 2, 

~. >~0). 
2. Stable~eriodicj/2-cycle trajectories of the dynamical system with a time Tl~ of prolonged contact occur in the 

domains G~/2(2(j- 1) < e. < 2/'; 0 < [3 < 2j/e. for evenj and 0 < 13 < 2 -  (2( j -1)&.  for oddj.  
3. Cycles of multil)le points exist in the domains G~j of the plane of the parameters [3, e., and the boundaries of 

these domains are g~ven by the relations 

~s = 1 + 2 / e. (2.3) 

=f2j/e.. j = 2,4,6 .... 

~- [ 2 - 2 ( j - l ) / e . ,  j=3 ,5 ,7  .... 

4.j/2-cycle stochastic trajectories of the dynamical system occur in the domains G~jt2 between the boundaries 

15=1+2/eo, ~ = l + l / ( j - I )  ( j=2,4,6, . . . )  (2.4) 

The subdivision of the plane of the parameters [3, e. into domains of existence of the trajectories of the dynamical 
system indicated above is shown in Fig. 4. 

3. C O M P L E X  T Y P E S  O F  T R A J E C T O R Y  O F  T H E  D Y N A M I C A L  S Y S T E M  

3.1. Suppose that 2 < e. < 4. It follows from the results presented above that, as ~ increases from zero, the 1- 
cycle stable periodic trajectories of the dynamical system bex, ome unstable when E ° = 4/a (ct = ~ - 1). It can be 
shown that, in this case, a pair of stable fixed points of the mapping T 2 is generated which correspond to stable 
periodic trajectories of the dynamical system with a doubled period which, when e 1. = 4(1 + a 2) lose stability and 
a stable fourfold periodic trajectory of the dynamical system is generated (stable fixed points of the mapping T 4 
appear) which, when e 2 = 4(1 - a 2 + a3)/(1 + ct 4) loses stability, and so on. 
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Fig. 4. 
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On eoutinuing to vary e., we can obtain that a doubling of the multiplicity of the period of the periodic trajectories 
of the dynamical system occurs on crossing the boundary ~ and that the equations of these trajectories can be 
described by the formula 

4 n-I 
~n = ~ a (22p-I) ~ ( l-Ct 2.) (3.1) 

1+0~ 2" p=0 k=2p+l 

s = ~/2 for even n and s = (n - 1)/2 for odd n, where g/. defines 2 ~- and 2 ~+l-fold periodic trajectories of the dynamical 
system (n -- 0, 1, 2 . . . .  ). 

When 13 > I~-, there is no mapping T of the simple stable fixed points, but as has been shown above, there are 
stable points of the mapping 7,,. In this case, the Lyapunov index [51 is negative (~ < 0). When 13 > ~,, the Lyapunov 
index changes sign and becomes positive (Tt > 0) which corresponds to the onset of chaos. 

The corresponding form of the succession functions for the mappings T and T 2 and the two sets of values for 
the parameters e. = 3, 1~ = 1.4; e. = 3, 13 = 1.75 is shown in Fig. 5. 

In the domains (2.3) it is possible to separate out the inaccessible boundaries ~ ;  periodic trajectories of the 
dynamical system of as high a multiplicity as may be desired exist in as small a neighbourhood of these boundaries 
as may be desired, and the equations of the boundaries of the domains of existence of these trajectorids can be 
written in the form 

(Xn - 1 4 

E° = 4 0tn+l--------~, " e° = 1 +0t n+' ' ' ' ' - 'T (3.2) 

and the equations of the boundaries F_ n in the form 

I~, = 4 1 +Or - Ot n+l (3 .3 )  

l+ot 

The domains of existence of complex trajectories of the dynamical system are shown in the plane of the parameters 
ct, e. in Fig. 6. The inaccessible boundaries are denoted by a dotted and dashed line. Bifurcations of the doubling 
of the period are observed when the parameters are changed to values lying outside the hatched regions on the 
side of the inaccessible boundaries. Complex trajectories of the dynamical system, including stochastic 
trajectories, exist in the hatched regions. 

3.2. Suppose that 4 < E. < 6. In this case, the inaccessible boundaries are defined for different n by the formula 

~ .  = 411 + ct "+1  / (1 + c t ) ]  (3.4)  

They are denoted, in the plane of the parameters 0t, e. in Fig. 7, by dot--dash curves. Cycles of (n + 1)-fold points 
of a mapping 7 n+l exist for values of the parameters ct, E. from domains with boundaries which are defined by the 
relations 

~t" + l 4 (3.5) 
6 ,  = 4 ~ E, = 

0t n+l +1 '  1--0~ n+l 

Here, as in the case when 2 < e. < 4, the inaccessible boundaries bunch together as n increases, approaching 
one another and tending to the straight line ~. = 4. In this case, the Feigenbaum process of doubling of the period 
is again observed. 

The straight line E. = 4(¢t + 1) can be singled out in the plane of the parameters ¢t, e, in Fig. 7. Domains G~' 
where three-fold periodic trajectories of the dynamical system exist lie on both sides of this line and they are bounded 

Fig. 5. 
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by the curves 

~. 4 l+(x+ct3 l+(x 
= ¢ .  = 4  (3 .6 )  l+(x3 ' l_0t  3 

l + a  1 +Or-or 2 
~. = 4 ¢* = (3 .7 )  l+ct3 ' l_0t3 

between which, in turn, domains of four-fold, five-fold and so on periodic trajectories of the dynamical system 
exist, bounded by the curves 

l+0t  +0t n l+0t  
¢. = 4  l+ctn+ I , e .  = 4  l_an+--------- T (n=2,3 ,4 , . . . )  (3.8) 

Here, the process of the doubling of the period is also observed as n increases as the straight line is approached. 
It can be shown that there is an even number  of inaccessible boundaries  in the plane of the parameters 0t, 8. 

e* t  -- 4(I - 0t t+2 ) / (1 - 0t) (3 .9 )  

These inaccessibl,~ boundaries separate pairs (with the same number  of n-fold cycles) of domains where periodic 
trajectories of the dynamical system exist. 

For instance, the curve e.t = 4(1 + 0t + ct 2) separates two domains of four-fold periodic trajectories of 
the dynamical system. On the two sides of the curve c.2 = 4(1 + ¢x + ct 2 + ct 3) there are two domains of five- 
fold trajectories of the dynamical system, and, between them, there are domains of six-fold, seven-fold and so 
on trajectories of the dynamical system. This process of the occurrence of pairs of domains of complex periodic 
trajectories of the dynamical system continues in the direction of change to the domain of 3/2-cycle periodic trajec- 
tories of the dynamical system. The nearer curve (3.9) is to this domain, the higher the multiplicity of the simplest 
trajectory of the dynamical system and the kth inaccessible boundary separates the domains of the (k + 3)-, (k + 4)- 
and (k + 5)-fold periodic trajectories of the dynamical system, the equations of which are written, in the general 
case, in the following manner  

Eo = [ 4 ( 1 - 5 1 + 2 ) / ( I - G ) + o t  n+k ]/(1 +0t n+k+l) 

(~. = 4(I -or t+2 )/(1 - 0t)(l - 0t n+t+l ) (3.10) 

and, in the case of the domains located above the latter domains, as 

~° = 4(1 - ot t÷2 ) / (I - 0t)(I + 0t n+t+l ) 

E. = [ 4 ( l - 0 t t + 2 ) / ( I - a ) - c t n * k ] / ( l - 0 t a + l t + l )  
(3.11) 
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In (3.10), and (3.11) n = 2, 3, 4 . . . .  ; k = 0, 1, 2 . . . .  ; the multiplicity of the periodic trajectories of the dynamical 
system is denoted by n + k + 1. 

The domains of complex trajectories of the dynamical system, including stochastic trajectories, are shown in 
Fig. 7. 

By varying e. in a similar manner,  it can be shown that the situation described above, involving the occurrence 
of pairs of domains of existence of trajectories of the dynamical system which may be as complex as desired in the 
neighbourhood of the inaccessible boundaries, holds in the whole plane of the parameters of the system. 
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